TD2 TANC - Tores et courbes elliptiques complexes

Exercice 1. On pose $\Lambda = \mathbb{Z} + i\pi\mathbb{Z} \subseteq \mathbb{C}$ et $X = \mathbb{C}/\Lambda$. Montrer que $\operatorname{End}(X) = \mathbb{Z}$. Soit $\alpha \in \operatorname{End} X = \{\beta \in \mathbb{C}, \beta\Lambda \subseteq \Lambda\}$. Alors il existe $a, b, c, d \in \mathbb{Z}$ tels que

$$\begin{cases} \alpha \cdot 1 = a + i\pi b \\ \alpha \cdot i\pi = c + i\pi d. \end{cases}$$

En soustrayant $i\pi$ fois la première ligne à la seconde on obtient $0 = c + i\pi d - ai\pi + \pi^2 b = b\pi^2 + (d-a)i\pi + c$. Puisque π est transcendant ceci implique que b = 0 (et d = a) donc $\alpha \in \mathbb{Z}$.

Exercice 2. On considère $\Lambda = \mathbb{Z}[\omega] \subseteq \mathbb{C}$ avec $\omega = \frac{1+\sqrt{-3}}{2}$.

1. Montrer que $g_2(\Lambda) = 0$ (on pourra considérer $g_2(\omega \Lambda)$). On a $\omega^3 = 1$ c'est donc un inversible de $\mathbb{Z}[\omega]$ et donc $\omega \mathbb{Z}[\omega] = \mathbb{Z}[\omega]$. On en déduit que

$$g_2(\Lambda) = g_2(\omega \Lambda) = \sum_{\lambda \Lambda \setminus \{0\}} (\omega \lambda)^{-4} = \omega^2 \sum_{\lambda \Lambda \setminus \{0\}} \lambda^{-4} = \omega^2 g_2(\Lambda)$$

donc $g_2(\Lambda) = 0$.

- 2. Montrer que $\mathbb{C}/\Lambda \simeq E(\mathbb{C})$ avec $E: y^2 = 4x^3 g_3(\Lambda)$. Il s'agit simplement d'appliquer le théorème d'uniformisation.
- 3. Quel est le j-invariant de E? Puisque $g_2(\Lambda) = 0$ son j-invariant est 0.
- 4. Montrer que E est isomorphe à la courbe elliptique $y^2 = x^3 + 1$. Les deux courbes ont le même j-invariant elles sont donc isomorphes sur \mathbb{C} .

Exercice 3 (Degré des isogénies et isogénies contragrédientes). Soit $X = \mathbb{C}/\Lambda$ et $X' = \mathbb{C}/\Lambda'$ des tores complexes. Soit $\alpha \colon X \to X'$ une isogénie qu'on identifie avec sa représentation analytique.

- 1. Montrer que $\deg[n]_X = n^2$. Si $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ alors $n\Lambda = \mathbb{Z}n\omega_1 + \mathbb{Z}n\omega_2$. Ainsi (ω_1, ω_2) est une base adaptée de $n\Lambda$ dans Λ donc $\Lambda/n\Lambda \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ de cardinal n^2 .
- 2. Soit $X'' = \mathbb{C}/\Lambda''$ un autre tore complexe et $\beta \colon X' \to X''$ une isogénie. Montrer que $\deg(\beta \circ \alpha) = \deg(\beta) \deg(\alpha)$.

On veut déterminer $\deg(\beta \circ \alpha)$, i.e. l'indice de $\alpha\beta\Lambda$ dans Λ'' en fonction de $\deg[\Lambda'': \beta\Lambda']$ et de $\deg(\alpha) = [\Lambda': \alpha\Lambda]$. Par les inclusions $\alpha\beta\Lambda \subseteq \beta\Lambda' \subseteq \Lambda''$ on a

$$[\Lambda''\colon \alpha\beta\Lambda] = \underbrace{[\Lambda''\colon \beta\Lambda']}_{\deg(\beta)}[\beta\Lambda'\colon \alpha\beta\Lambda].$$

On remarque qu'on a un isomorphisme

$$\begin{array}{ccc} \Lambda'/\alpha\Lambda & \longrightarrow \beta\Lambda'/\alpha\beta\Lambda \\ x & \longmapsto \beta x \end{array}$$

donc $[\beta \Lambda' : \alpha \beta \Lambda] = [\Lambda' : \alpha \Lambda] = \deg \alpha$.

- 3. On pose $n = \deg(\alpha) = [\Lambda' : \alpha \Lambda]$.
 - (a) Justifier que pour tout $\lambda' \in \Lambda'$ on a $n\lambda' \in \alpha\Lambda$. Soit $\lambda' \in \Lambda'$ alors, par le Théorème de Lagrange, $n\overline{\lambda'} = 0 \in \Lambda'/\alpha\Lambda$ ce qui signifie que $n\lambda' \in \alpha\Lambda$.
 - (b) En déduire que pour toute isogénie $\alpha \colon X \to X'$ de degré n il existe une isogénie $\widehat{\alpha} = \frac{n}{\alpha} \colon X' \to X$ appelée isogénie contragrédiente de α telle que

$$\widehat{\alpha} \circ \alpha = [n]_X \text{ et } \alpha \circ \widehat{\alpha} = [n]_{X'}.$$

On déduit de la question précédente que $\frac{n}{\alpha}\Lambda'\subseteq \Lambda$, on en déduit une isogénie $\widehat{\alpha}=X'\to X$ de représentation analytique $\frac{n}{\alpha}$.

^{1.} Attention l'isomorphisme est sur \mathbb{C} il n'y a pas de raison pour que $g_3(\Lambda) \in \mathbb{Q}$.

- (c) (Un exemple). On considère $\Lambda = \mathbb{Z}[2i] \subseteq \mathbb{C}$ et $\Lambda' = \mathbb{Z}[i]$.
 - i. Déterminer End(X) et End(X'). On a

$$\begin{split} \operatorname{End}(X) &= \{z \in \mathbb{C}, z\Lambda \subseteq \Lambda\} \\ &= \{z \in \mathbb{C}, z\mathbb{Z}[2i] \subseteq \mathbb{Z}[2i]\} \\ &= \{z \in \mathbb{Z}[2i], z\mathbb{Z}[2i] \subseteq \mathbb{Z}[2i]\} \text{ car } 1 \in \mathbb{Z}[2i] \\ &= \mathbb{Z}[2i] \text{ car } \mathbb{Z}[2i] \text{ stable par multiplication.} \end{split}$$

De même $\operatorname{End}(X') = \mathbb{Z}[i]$.

- ii. Quel est le degré de l'isogénie donnée par la représentation rationnelle $\iota \colon \mathbb{Z}[2i] \hookrightarrow \mathbb{Z}[i]$? Le degré de l'isogénie est l'indice $[\mathbb{Z}[i] \colon \mathbb{Z}[2i]] = 2$, le conducteur de $\mathbb{Z}[2i]$ dans $\mathbb{Z}[i]$.
- iii. Quelle est son isogénie contragrédiente? Son isogénie contragrédiente est $\mathbb{Z}[i] \to \mathbb{Z}[2i], a \mapsto 2a$.

Exercice 4. On pose $R = \mathbb{Z}\left[\sqrt{-11}\right]$, $\omega = \sqrt{-11}$ et $\mathfrak{a} = \langle 3, 1 + \sqrt{-11} \rangle$. On dit que deux isogénies $\iota_1 \colon \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_1'$ et $\iota_2 \colon \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_2'$ sont isomorphes s'il existe des isomorphismes α et $\alpha' \in \mathbb{C}$ telles que

$$\begin{array}{ccc}
\mathbb{C}/\Lambda_1 & \xrightarrow{\iota_1} \mathbb{C}/\Lambda'_1 \\
 & & & & \downarrow \alpha' \\
\mathbb{C}/\Lambda_2 & \xrightarrow{\iota_2} \mathbb{C}/\Lambda'_2.
\end{array}$$

- 1. (a) L'ordre R est-il maximal? Quel est son discriminant? Quel est son conducteur? Non, l'ordre maximal est $\mathbb{Z}\left[1+\sqrt{-11}\right]$ 2. L'ordre R est de conducteur 2. Son discriminant est -44.
 - (b) L'idéal $\mathfrak a$ est-il principal? Est-il inversible? On peut calculer sa norme qui est 3 sous réserve que $3|N(1+\sqrt{-11})=1+11=12$ ce qui est bien le cas. Si $\mathfrak a$ est principal alors il existe $\alpha=a+b\sqrt{-11}$ de norme 3 dans $\mathscr O_K$ tel que $\mathfrak a=\langle\alpha\rangle$. On a donc $a^2+11b^2=3$ ce qui implique que b=0 et donc $a^2=3$ ce qui est absurde. Donc $\mathfrak a$ n'est pas principal. Il est de norme 3 qui est premier au conducteur donc il est inversible.
- 2. On identifie R à un sous anneau de $\mathbb C$ et on considère R et $\mathfrak a$ comme des réseaux de $\mathbb C$. On pose $\iota_{\mathfrak a} \colon \mathbb C/\mathfrak a \longrightarrow \mathbb C/R$ l'isogénie engendrée par l'inclusion $\mathfrak a \hookrightarrow R$.
 - (a) Quelle est sa représentation analytique? On a $\mathfrak{a} \hookrightarrow R$ qui est la multiplication par 1 donc $\mathfrak{a}\mathbb{C} = \mathbb{C} \to R\mathbb{C} = \mathbb{C}$ est toujours la multiplication par 1.
 - (b) Quel est le degré de $\iota_{\mathfrak{a}}$? Son degré est l'indice de \mathfrak{a} dans R, i.e. $[R:\mathfrak{a}] = \#(R/\mathfrak{a}) = N(\mathfrak{a})$.
 - (c) Les courbes elliptiques complexes $E_{\mathfrak{a}}$ et E_R sont-elles isomorphes? Elles sont isomorphes si et seulement si les réseaux \mathfrak{a} et R sont homothétique ce qui revient à dire qu'il existe $\alpha \in \mathbb{C}$ tel que $\mathfrak{a} = \alpha R$ ce qui implique $\alpha \in R$ et \mathfrak{a} principal ce qui n'est pas le cas.
- 3. On pose $\mathfrak{b} = \overline{\mathfrak{a}}$.
 - (a) Montrer que \mathfrak{a} et \mathfrak{b} n'ont pas la même classe dans $\mathrm{Cl}(R)$ (on pourra montrer que $\mathfrak{a}^2 = \langle 9, 4 + \sqrt{-11} \rangle$ et justifier qu'il n'est pas principal).

$$\mathfrak{a}^2 = \left<9, 3(1+\sqrt{-11}), 1-11+2\sqrt{-11}\right> = \left<9, 3+3\sqrt{-11}\right), -10+2\sqrt{-11}\right> = \left<9, 4+\sqrt{-11}, -10+2\sqrt{-11}\right>.$$

$$[\mathfrak{a}\overline{\mathfrak{a}}] = [\mathfrak{a}^2] = R.$$

Donc ${\mathfrak a}$ n'est pas dans la même classe que son conjugué.

- (b) On considère $\iota_{\mathfrak{b}}$ l'isogénie définie de la même façon que $\iota_{\mathfrak{a}}$. Les isogénies $\iota_{\mathfrak{a}}$ et $\iota_{\mathfrak{b}}$ sont elles isomorphes?
 - Si les isogénies étaient isomorphes cela impliquerait que les réseaux $\mathfrak a$ et $\mathfrak b$ soient homothétiques donc que $\mathfrak a$ et $\mathfrak b$ soient dans la même classe ce n'est donc pas le cas.

^{2.} Une telle écriture est unique car $(1, \sqrt{-11})$ est une \mathbb{Z} -base de R.

Exercice 5. Soit $X = \mathbb{C}/\Lambda$ un tore complexe à multiplication complexe par un ordre quadratique $R = \operatorname{End}(X) = \{\alpha \in \mathbb{C}, \alpha\Lambda \subseteq \Lambda\}$ dans un corps quadratique K. On pose $\tau \in \mathcal{H}$ tel que $\Lambda \simeq \Lambda_{\tau} = \mathbb{Z} + \tau \mathbb{Z}$. On pose

$$\mathrm{Ell}_{\mathbb{C}}(R) = \{E \text{ courbe elliptique sur } \mathbb{C}/\operatorname{End}(E) \simeq R\} / \simeq$$

l'ensemble des classes d'isomorphisme de courbes elliptiques sur $\mathbb C$ à multiplication complexe par R.

1. Montrer que $\tau \in K$.

On pose $R = \mathbb{Z}[\omega]$. Puisque Λ est stable par R on a en particulier

$$\omega \cdot \tau = a + b\tau$$

pour des $a, b \in \mathbb{Z}$. Donc $\tau = \frac{a}{\omega - b} \in K$.

- 2. En déduire qu'il existe $u \in R$ tel que $u\Lambda_{\tau}$ est un idéal \mathfrak{a} de R. On écrit $\tau = \frac{\alpha}{n}$ avec $\alpha \in R$ et $n \in NN^*$. On peut toujours faire ça car K est le corps des fractions de R donc $\tau = \frac{\alpha_1}{\alpha_2} = \frac{\alpha_1 \overline{\alpha_2}}{N(\alpha_2)}$ avec $\alpha_i \in R$. On remarque alors que $\mathfrak{a} = n\Lambda = n\mathbb{Z} + \alpha\mathbb{Z} \subseteq R$ et c'est toujours un R-module c'est donc un idéal de R.
- 3. Montrer que $\mathfrak a$ est un idéal inversible (on pourra considérer l'anneau des endomorphismes de $\mathfrak a\subseteq\mathbb C$ en tant que réseau). On a

$$R = \operatorname{End}(X) = \operatorname{End}(\mathfrak{a}) = \{z \in \mathbb{C}, z\mathfrak{a} \subseteq \mathfrak{a}\} = \{z \in K, z\mathfrak{a} \subseteq \mathfrak{a}\} = (\mathfrak{a} : \mathfrak{a}) = R_{\mathfrak{a}}.$$

Ceci signifie que $R_{\mathfrak{a}} = R$ donc que \mathfrak{a} est inversible dans R.

- Soit Λ' ⊆ ℂ et X' = ℂ/Λ' tel que Λ' ≃ a' un idéal inversible de R. Montrer que X ≃ X' si et seulement si a et a' ont la même classe dans Cl(R).
 On a X ≃ X' si et seulement si leur réseaux sont homothétiques i.e. ∃μ ∈ ℂ, μa = a' mais ça implique μ ∈ K, i.e. [a] = [a'] ∈ Cl(R).
- 5. En déduire que $\# \operatorname{Ell}_{\mathbb{C}}(R) = \# \operatorname{Cl}(R) = h(R)$. On a vu que tout tore complexe à $\operatorname{CM} X = \mathbb{C}/\Lambda$ satisfait $\Lambda \simeq \mathfrak{a}$ pour \mathfrak{a} un R-idéal inversible. Par ailleurs, la classe d'isomorphisme de X ne dépend de la classe de \mathfrak{a} dans $\operatorname{Cl}(R)$. Donc, par la question précédente, à tout tore complexe à CM on peut associer un unique élément de $\operatorname{Cl}(R)$ et réciproquement tout élément de $\operatorname{Cl}(R)$ on peut associer une classe d'isomorphisme de tore à CM par R.

Exercice 6 (Anneau d'endomorphisme d'une courbe elliptique sur \mathbb{C}). Soit $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subseteq \mathbb{C}$ et $X = \mathbb{C}/\Lambda$ le tore complexe correspondant. On veut montrer que $R = \operatorname{End}(X) = \{\alpha \in \mathbb{C}/\alpha\Lambda \subseteq \Lambda\}$ est soit \mathbb{Z} soit un ordre quadratique. Considérons $\alpha \in \operatorname{End}(X)$ et $j, k, m, n \in \mathbb{Z}$ tels que $\alpha\omega_1 = j\omega_1 + k\omega_2$ et $\alpha\omega_2 = m\omega_1 + n\omega_2$.

- 1. On pose $M=\begin{pmatrix} \alpha-j & -k \\ -m & \alpha-n \end{pmatrix} \in M_2(\mathbb{C})$. Montrer que $\det(M)=0$. On a $M \cdot \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = 0$ donc la matrice n'est pas inversible ce qui signifie que $\det M=0$.
- 2. En déduire que $X^2 (j+n)X + jn km \in \mathbb{Z}[X]$ annule α et donc que α est un entier algébrique. On obtient ce polynôme en développant det $M = (\alpha j)(\alpha n) km = 0$. Puisqu'il est à coefficients dans \mathbb{Z}, α est bien un entier algébrique de degré au plus 2.
- 3. En déduire que $R \cap \mathbb{R} = \mathbb{Z}$. Si $\alpha \in \mathbb{R}$ alors la relation $(\alpha - j)\omega_1 - k\omega_2 = 0$ implique $\alpha = j \in \mathbb{Z}$ et k = 0 car, par hypothèse, (ω_1, ω_2) est une famille \mathbb{R} -libre de \mathbb{C} .
- 4. Montrer que si $\alpha \notin \mathbb{Z}$ alors α est dans un ordre dans un corps quadratique imaginaire $K = \mathbb{Q}(\sqrt{d})$. Si $\alpha \notin \mathbb{Z}$ donc $\alpha \notin \mathbb{R}$ alors α est un entier algébrique de degré 2 dans un corps quadratique $\mathbb{Q}(\sqrt{d})$. Si d > 0 alors on peut plonger $\mathbb{Q}(\sqrt{d})$ dans \mathbb{R} et donc α avec ce qui contredit l'hypothèse $\alpha \notin \mathbb{R}$.
- 5. Soit $\beta \in R \setminus \mathbb{Z}$ un autre élément. D'après ce qui précède β est aussi dans un ordre quadratique imaginaire dans un corps $\mathbb{Q}(\sqrt{d'})$.
 - (a) Soit $\alpha \in \mathbb{Q}(\sqrt{d}) \setminus \mathbb{Q}$, $\beta \in \mathbb{Q}(\sqrt{d'}) \setminus \mathbb{Q}$ avec d et d' des entiers sans facteur carré. Supposons que $\alpha + \beta$ de degré ≤ 2 . Montrer qu'alors $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(\sqrt{d'})$ (on pourra se ramener au cas $\alpha = \sqrt{d}$ et $\beta = \sqrt{d'}$ puis déduire d'une relation de degré 2 en $\alpha + \beta$ que $\sqrt{d} \in \mathbb{Q}(\sqrt{d'})$ par exemple). Le degré de nombres algébriques ne change par lorsqu'on leur ajoute des rationnels (car pour tout $r, u \in \mathbb{Q} \times \mathbb{Q}^{\times}, X \mapsto uX + r$ définit un isomorphisme d'anneaux de $\mathbb{Q}[X]$ dans $\mathbb{Q}[X]$). On peut alors supposer $\alpha = \sqrt{d}$ et $\beta = \sqrt{d'}$. Puisque $\alpha + \beta$ est de degré ≤ 2 , il existe $a, b \in \mathbb{Z}$ tels que

$$(\alpha + \beta)^2 + a(\alpha + \beta) + b = d + d' + 2\sqrt{dd'} + a(\sqrt{d} + \sqrt{d'}) + b = \sqrt{d'}(2\sqrt{d} + a) + d + d' + a\sqrt{d} + b = 0.$$

On en déduit que $\sqrt{d'} \in \mathbb{Q}(\sqrt{d})$.

(b) Conclure.

Si $R \neq \mathbb{Z}$ alors on a vu que R est composé d'entiers algébriques dans un unique corps quadratique imaginaire. Il s'agit donc d'un ordre quadratique imaginaire.

Exercice 7 (La multiplication complexe est transmissible). On pose $X = \mathbb{C}/\Lambda$ et $X' = \mathbb{C}/\Lambda'$ deux tores complexes et $R = \mathbb{Z}[\omega]$ un ordre quadratique imaginaire et on suppose qu'il existe une isogénie $\alpha \colon X \to X'$ de degré $f \ge 1$ entre les deux. Soit $S = \mathbb{Z}[f\omega]$.

1. Montrer que si X est à CM par R alors $S \subseteq \operatorname{End}(X')$. Puisque α est une isogénie on a $\alpha\Lambda \subseteq \Lambda'$. Par l'isogénie contragrédiente on a $\frac{f}{\alpha}\Lambda' \subseteq \Lambda$. Enfin, puisque X est à CM par R on a $\omega\Lambda \subseteq \Lambda'$. Pour que $S \subseteq \operatorname{End}(X')$ il faut et il suffit que $1 \cdot \Lambda' \subseteq \Lambda'$ et $f\omega \cdot \Lambda' \subseteq \Lambda'$. La première condition est triviale. Pour la seconde on a

$$f\omega\Lambda' = \alpha\omega\frac{f}{\alpha}\Lambda'$$

$$\subseteq \alpha\omega\Lambda$$

$$\subseteq \alpha\Lambda$$

$$\subset \Lambda'.$$

2. Montrer que si X' est à CM par R alors $S\subseteq \operatorname{End}(X)$ (on pourra penser à (ré)utiliser l'isogénie contragrédiente).

Il suffit d'appliquer l'isogénie contragrédiente à α . On a alors une isogénie $\widehat{\alpha} \colon X' \to X$ de degré f avec $\operatorname{End}(X')$ et on peut appliquer la question 1.

3. Montrer qu'on a pas forcément $\operatorname{End}(X) = \operatorname{End}(X')$ (cf. question 3.c de l'Exercice 3). L'inclusion $\mathbb{Z}[2i] \to \mathbb{Z}[i]$ induit une isogénie $X \to X'$ de degré 2 avec $\operatorname{End}(X) \neq \operatorname{End}(X')$.

Exercice 8. On admet que $\overline{\mathbb{Q}}$ est dénombrable. Justifier que les courbes elliptiques complexes à CM sont « rares » parmi l'ensemble des courbes elliptiques complexes.

Le j-invariant des tores à multiplication complexe est un entier algébrique. En particulier, c'est un élément de $\overline{\mathbb{Q}}$. Ces tores à CM correspondent donc à un sous-ensemble dénombrable de

$$\mathscr{F} = \left\{ z \in \mathbb{C}, -\frac{1}{2} \le \Re(z) < \frac{1}{2}, |z| \ge 1 \text{ et } z \ne e^{i\theta} \text{ pour } \frac{\pi}{3} < \theta < \frac{\pi}{2} \right\}$$

car dans $\overline{\mathbb{Q}}$. Mais cet ensemble contient des ouverts de \mathbb{C} qui sont non-dénombrables. Donc il y a infiniment fois moins de tores à CM (donc de courbes à CM) que de tores sans CM.